
Collective relaxation of spins and 'superradiance' of magnons

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 7027

(http://iopscience.iop.org/0953-8984/3/36/008)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 11/05/2010 at 12:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/36
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 3 (1991) 7027-7038. Printed in the UK 

Collective relaxation of spins and 'superradiance' of 
magnons 

V F Los' 
Institute of Metal Physics, Academy of Sciences of the Ukrainian SSR, Vemadsky Str. 36, 
Kiev 142, USSR 

Received22February 1990, in final form 8 November 1990 

Abstract. The Heisenberg model of a ferromagnet that contains weakly bound impurity or 
nuclearspinsisconsidered. thenew non-linear kineticequation for collectivespinoperator 
Zcomponentsof these selected spins (equal to 4) in the initial condition with inverted spins 
and temperature T # 0 is obtained. This equation has an exact solution. It is shown that the 
collective relaxation of these selected spins under the considered non-equilibrium initial 
conditions revealsmoperative behaviour of the superradiant type accompanied by coherent 
magnon generation. 

1. Introduction 

Self-organization in non-linear dynamic systems attracts considerable interest. For 
example, the cooperative non-linear phenomena that take place when an electro- 
magnetic field interacts with a substance have been investigated intensively. Superradi- 
ance is the most exciting example of such an effect [l]. This phenomenon, in which 
coherent atomic radiation occurs, may be a prospect for the creation of a coherent 
radiation emitter without a resonator. 

It is interesting to consider the possibility of cooperative phenomena in condensed 
matter with the participation of other Bose excitations such as phonons and magnons. 
The idea of magnon laser-type generation was proposed earlier [2]. 

For this purpose the Heisenberg model of a ferromagnet containing weakly bound 
spins of impurity atoms (impurity spins) or nuclear spins is considered in the present 
work. This system differs considerably from that used in optics [l]. The relaxation of a 
single selected spin (impurity or nuclear) at a small concentration of impurities in the 
ferromagnet is rather complicated [3] owing to degeneracy of the multilevel spectrum 
of the selected spin (the impurity spin of value S' has 2s' + 1 equidistant levels in the 
effective magnetic field of the ferromagnet). 

It is important that the main channel of impurity spin relaxation is connected with 
the processes of emission or absorption of one magnon [3]. The spontaneous relaxation 
time for such processes is defined by a constant for the selected spin interaction with the 
spin waves of a ferromagnet and by a quadratic dispersion law for magnons. As the 
impurity spin concentration increases, the subsystem of these spins becomes non-linear. 
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On the other hand, the two-level Dicke model [I] and the Heisenberg model of a 
ferromagnet with impurities can be considered as some subsystem (impurities) inter- 
acting with a heat bath (phonons, magnons). To investigate the kinetics of such systems, 
direct methods have been developed lately [4,5]. We shall consider in succession the 
case of a heat bath at Tf 0, unlike the conventional consideration of the Dicke model 
when the interaction with the heat bath is considered either phenomenologically or at 
T = O .  

This paper is organized as follows. In section 2 the Hamiltonian of the Heisenberg 
ferromagnet with weakly bound impurityspinsisrewritten in termsofcollectiveimpurity 
spin operators and magnon operators. Then with the help of a method developed in [SI 
the generalized kinetic equations for the subsystem of impurity spins of arbitrary value 
S' interacting with a reservoir of magnons are obtained. This approach to the problem 
under consideration is new for the Dicke model, too. 

In section 3 the evolution of the 2-component of the collective impurity (nuclear) 
spin operator is considered. To discover the possibility of cooperative effects with the 
participation of magnons, the considered system was simplified to the Dicke case but 
with arbitrary temperature (in the range T <  Tc, Tc is the Curie temperature). As a 
result, a new non-linear kinetic equation for the collective spin operator in the initial 
condition with inverted spins is obtained. This equation has an exact solution. For 
further analysis the case of low temperature was considered. In this case the obtained 
equation is reduced to the Rehler-Eberly equation [6]. The effects due to discarded 
effective-field fluctuations in the ferromagnet, the case of S' > i and the influence of 
temperature will be considered in subsequent publications. 

In section 4 the solution obtained is considered for the parameters of a Heisenberg 
ferromagnet. The possibility of collective relaxation of selected spins (impurity and 
nuclear) of superradiant type, which is accompanied by coherent generationofmagnons, 
is shown. The conditions under which the effect occurs and the characteristics of the 
'superradiant' impulse are evaluated in terms of the considered model parameters. 

2. The Hamiltonian of the system and basic equations 

Let us consider the Heisenberg ferromagnet containing N impurity atoms, for which the 
spin value S' and exchange interaction I:, with the spin of the matrix atom (i, n denote 
the impurity atom and matrix atom positions respectively) differ from the corresponding 
values S and In,,. for the matrix atoms. The Hamiltonian of such a system has the form 

H = - z I ; n S , S n  - tC I, ,*S,S,f  (1) 
m m' 

where S, is the operator of the impurity atom spin (impurity spin) situated in the site or 
interstice with index i and S. is the spin operator of matrix atom in site n of the matrix. 
The impurity concentration is considered to be small. 

We shall consider the temperature range T G  Tc. Within this temperature range, by 
usingtheHolstein-Primakofftransformation, thespinoperatorsS,(S S 1)ofthematrix 
atoms can be substituted by creation and annihilation operators for the spin waves 
a:, a,. As weakly bound impurity spins with excitation energy ho" < ksTc will be 
considered subsequently, then k,Tcan be as large as fiw", and consequently there will 
be no transformation from operators S, to Bose operators, Introducing the effective 
magnetic field (directed along the Z axis) acting on an impurity spin (due to the matrix 
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magnetization) and performing the above-mentioned transformations, we shall obtain 
that the Hamiltonian (1) takes the form 

where 
H =  Hs + HZ -k H i  (2) 

Hs = -E fiwiSf 

H= = E fiw,a:a, 

H~ = 2 E ( y z s t a :  + y,S;a,) + E E ykf,Sf(a:a,. - (a:ax). 

fiwi = E z;"(S:) 
i n 

x 

i r  i YR-' 

Here (Sf) is the thermal average of Sf (at T <  T,, (Sf) = S), hw, is the energy of the 
spin wave with number K, Sf = Sf k is:, 

yk = -tv?ss'i2 c l;ncK" 

a. = c cans, 

y*.a. = E IbC&Cf." 
n " 

and Cxn, Ctn are the coefficients in the transformations 

a,' = E  c:,,a,+ 

describing the transition from Bose operators a:, a, (which create and annihilate spin 
excitations on site n) to spin-wave operators a:, a,. In the case of interstitial impurity 
atoms, when the matrix atoms form a perfect crystal, we have 

where K is the wavevector, r, is the,radius vector of the nth site and No is the number of 
matrix atoms. When impurity atoms substitute the matrix atoms and the zero approxi- 
mation for spin waves corresponds to a crystal with vacancies, expression (3) is approxi- 
mate but its error is small for small K .  Subsequently we shall use this formula for C,, 
because only small values of K will be needed. 

We shall assume further that all impurity atoms are situated in equivalent positions. 
Then the Hamiltonian (2) takes the form 

where 

Y R 

C,. = (1/N;iz) (3) 

H =  Hs + HZ + H i  

Hs = -hwoSf 

H~ =I: ( y : ~ : a :  + y , ~ ; a , )  + E y ; - * ~ S ~ - * ~ ( a ; a d 3  - (a:agt)), 

(4) 

H= = E fiw,a:a, 
I 

x KK' 

Here 
s; = I: s: erirri s: = I: sf 

i i 

are the collective spin operators (ri is the radius vector of the impurity atom) satisfying 
the commutation relations 

The quantities yw, y: have the form 
[s:, S,] = 2s:_,.[s:, s:.] = +s:'*,. 

yc = 

yk  = (l/No) E [L e-i*(rtrrn), 

I: I !  ut ei"(ri-r.' 

n 

n 
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In the case considered when impurities are in equivalent positions, yK and y: as well as 
w' = wi do not depend on i. 

As seen from (4), the Hamiltonian obtained differs from the one usually considered 
in the Dicke model [ 11 in the term quadratic in the Bose operators in Hi, which describes 
the influence of the effective-field fluctuations (spin waves) on the energy levels of 
impurity spin in the effective magnetic field hw'. It should also be noted that the 
considered subsystem of impurity spins is not a two-level one (in contrast to the Dicke 
model) because S' has arbitrary value. 

Let us note the important total spin conservation law for the system described by the 
Hamiltonian (4). It is easy to check that 

[Mz, HI = 0 

So Mz is the integral of motion for the Hamiltonian (4) and therefore 

where 

(A), = SP(P(OA) (6) 
is the non-equilibrium average for the operatorA @(f) is the statistical operator for the 
whole system). 

For the system with Hamiltonian (4) the following equations of motion for the 
collective spin and spin-wave operators hold: 

ifi-= fiwos: + ZC y , ~ ; - , + a , .  - dS: 
y ; , - a ~ : + ~ - + ( n i t a ~ .  - (a:.a,.)) 

dt *' M ' d  

The equations for S;  and a: follow from (7) with the help of Hermitian conjugation of 
the equations for S: and a,. From these equations one more integral of motion for the 
considered system follows: 

We put here AK = K - in order to point out that the maxima of S: and S; are in 
different ranges of K .  Further it is convenient to direct the vector K~ along the pattern 
symmetry axis (for example, along the cylinder axis) and tochoose aslKOl the wavevector 
modulus of the spin wave with frequency wo. 

Let usconsider the kineticsof dynamicvariables SE (a = +, -, Z)forthe subsystem 
of impurity spins. Then it is clear from expression (6) that for any subsystem operator B 

where Trs is the trace over states of the subsystem described by the Hamiltonian Hs (4), 
(E) ,  = T r s h  (OBI 
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ps(t) = TI, p(f) is the statistical operator for the subsystem, and TI, is the trace over 
states of the system with the Hamiltonian Hz. 

In order to determine the kinetics of values (B), we shall use the equation for ps(t) 
obtained in [SI in the initial condition 

e - w  1 A = -  
kB T' px = Tr, e -mz P(0) = PS(O)P, 

It means that at the moment f = 0 the subsystem does not interact with the boson field, 
which is in thermodynamic equilibrium at temperature T. Using this equation from [5], 
we obtain 

* df = Trs(ips(t)LSB - lo'e-"pS(t - t')(PL, elQ"'L,P)Bdf' ) . (9) 

HereL = Ls + L, + L,is thesuperoperatoractingonanarbitraryoperatorAasfollows: 

LA = ( I / f i ) [H,  A] 

P E  (TI, e-AHx)-l Tr,(e-mx. . .) is the projection operator of averaging over ther- 
mostat states (Pz = P), Q = 1 - P, and E+ +Oat the end of the calculations. It is used 
in equation (9) that PL,P = 0 for the Hamiltonian (4). 

As long as we consider the case when impurity and matrix spins interact with each 
other weakly (the coefficients yx, are small), we restrict ourselves subsequently to 
second order of perturbation theory on the interaction H,. Moreover, at the weak 
impurity-matrix exchange interaction, the following time hierarchy is realized 

rrsl s t 0  

where rre, is the impurity spin relaxation time due to the interaction H ,  and to is the 
characteristic correlation time of fluctuations in the boson (magnon) bath. Considering 
the time range to Q t =z rEl we can go to the Markovian approximation for equation (9) 
byneglectingbychangeofp,(t - t')intime-to,i.e. replacingps(f - f') byps(t). Besides, 
under these conditions the integration in (9) over t' may be extended to infinity. As a 
result in second order of perturbation theory we obtain 
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IftheoperatorBcommuteswithHs(i.e. with St), then B&) = Bandequation(10) 
takes the form 

Equations (10) and (11) are valid for the multilevel situation with arbitrary S' and 
T # 0. They represent a new approach to cooperative non-equilibrium phenomena. 

3. Kinetics of collective spin operators 

Let us consider the evolution of the mean value (St),. Substituting B =S,Z in (11) we 
obtain 

27 m= -qi + w)r(s:),+ F~ ly112 s(w. - wo)(s:s;), at I 

(12) 
n r = I Y A ~  S(O, - 00) = N(oo). 

lr 

It is seen that equation (12) leads to a chain of coupled equations for mean values of the 
collective spin operators. 

The main aim of this paper is to reveal the possibility of cooperative phenomena with 
the participation of magnons. So we shall simplify further the complicated situation in 
the considered model in order to make the first step in this report to solution of the 
problem. 

We shall rewrite (E) ,  noting that 

KS;), = N W '  + 1) + (S3, - { E (Sf)') + (Se), 
(13) 

S, = eu(r,-rr) s : ~ r .  
I t l '  

Setting the magnitude of the impurity spins S' = 6 ,  we obtain from (12) and (13) 

By making use of the conservation law (8) we shall calculate the value (SJ? For this aim 
we shall assume that (Sf) ,  depends weakly on the number i. This condition is realized if 
the coherence length /, = ZNU (U is the magnon speed, zN is the coherence relaxation 
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time of impurity spins, which will be defined further) exceeds the size of the pattern 
(along the direction of magnon emission). Then 

It should also be noted that the term with y' in the first equation (7) in the consideredcase 
of weak interaction between the impurity spins and mapons makes a small contribution 
-(T/T,-)*(l/l')l~ compared with the term proportional to y [3] (I' is the exchange 
integral for the impurity spin and nearest matrix spin, l i s  the exchange integral for the 
nearest matrix spins). It is easy to check that elimination of the terms with y' from 
Hamiltonian (4) does not violate the total spin conservation law and integral of motion 
(8). The influence of these terms on the effect under consideration will be considered 
later. 

Therefore, it may be assumed in the considered case that various modes do not 
interact with each other, as long as the first and third equations from (7) for the mean 
values of the impurity spin operators form a closed set of equations for each K .  

Now the conservation law [8] may be considered for each K ,  i.e. 

6[S:o)S;(t) + S;(t)S:(t)l + S~-,,(t)SZ,,,,(t) 

= 4[s:(o)S; (0) + s; (o)S:(O)l + ~ : - i o ( o ) ~ ~ 6 + k o ( o )  

whereS;(t) = e*'S" (a = +, -, Z)istheHeisenbergrepresentationforcollective 
operators. Averaging this equality with the density matrix p(0) and using commutation 
relations for S; and (13) (for S' = n), we obtain 

(sK),  = 2 [ ( ~ f ~ f ) ~ , ~  - ( ~ f ~ f ) , ]  exp[i(K - KO)(r i  - + (s,J~=~. 
i f i '  

We shall choose now as the initial state of the impurity spin system at f = 0 the totally 
invertedstate, in whichallthesespinsareintheexcitedstatewiththeZ-projectionbeing 
equal to -1. Then (S,.),=, = 0 and (SfS?),,, = t. We shall aIso make the decouplig 

( S f S f ) ,  = (S?),(Sf), (i  # i') 

and take into account that ( S f ) c  depends weakly on I, so that 

( S f ) ,  = ( S W N .  
As a result we obtain 

(s~ ) ,  = E ('- 9) exp[i(r - K O ) ( r i  - ri.)l.  (15) 
i#i' 

Substituting (15) into (14) we obtain the following non-linear equation for 
(s:)t E X @ ) :  

axlat = -AX + B(C - 2) ~ ( 0 )  = -N/Z.  (16) 
Here 

A = zr(i + 2 ~ )  B = 2rp C = N / 2 p  + N2/4 
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Equation (16) after the substitution y = x + A/2B is reduced to the following one 

(18) a y  - + Byz = BDz at 

where 

D2 = A2/4B2 + C. 

For the low-frequency spin waves of the matrix (T4 T,) in cubic crystals, the value r 
in the nearest-neighbour approximation for the exchange interaction has the form [3] 

where u0 is the volume of the crystal unit cell, d is the lattice parameter for the cubic 
crystal, z is the coordination number, O(oO) = 1 at wo > 0 and O(oo) = 0 at w0 < 0. 

Equation (18) has the following exact solution 

y o  + D tanh(BDt) 
D + y o  tanh(BDt) 

y = D  

where y o  is the value of y at I = 0. Accordingly, the rate of change of (S,'), is determined 
as 

(21) 
ay ax BD2(D2 - ya) _ = _ =  
ar ar cosh2(BDf)[D + y o  tanh(BDt)JZ' 

The obtained non-linear equation (18) and its solution (20) form the main formal 
result of this paper. This result is a generalization of the known Dicke model inves- 
tigations [l, 61 to the arbitrary temperature case (in the range T< Tc), 

For analytical evaluations the situation is simpler at sufficiently low temperatures 
kBTQ fiwo when the magnon occupation numbers can be neglected as compared 
with f .  Then equation (16) isreduced to the Rehler-Eberleyequation [6] and, as follows 
from (ZO), its solution for the initial condition with totally inverted impurity spins, when 
x(0) = - N / 2 ,  has the form 

where zo is the one-magnon spontaneous relaxation time for a single impurity spin. 
Hence the rate of change of (S t ) ,  is determined by the expression 

sech2 (-). ax ( p N +  l)z 
Jt 4pr0 2SN 
-= 

As is seen from (5) .  ax/& determines the rate of change of magnon numbers in 
the system. As long as the relaxation of 'ferromagnetic' impurity spins (coo > 0) is 
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accompanied by theabsorption oremission of one magnon with frequency w, = wo (see 
(12)), we shall determine the intensity of magnon energy change as 

Then 

I(t) = h.o0 axfat 

where ax/& is determined by (21) or by (U) at low temperatures. 
Thus the expressions obtained testify that at p N  9 1 in the considered system col- 

lective relaxation of spins of the superradiant type, which is accompanied by generation 
of magnons, is possible (see also section 4). 

The system of nuclear spins in a ferromagnet may be considered in the same way. 
Nuclear magnetic resonance (NMR) frequencies are usually smaller than the lowest spin- 
wave energy, but this energy may be reduced with the help of a constant external 
magnetic field. As a result the excitation energy of a nuclear spin gets into the spin- 
wave energy band, and nuclear spin relaxation processes accompanied by emission or 
absorption of one spin wave are possible. The Hamiltonian of a ferromagnet in which 
N atoms have nuclear spins interacting with their own electron spins by means of a 
hyperline interaction, has the form 

H = A z I * S , ,  - & I ,S, ,S,y .  (24) 
n M' 

Here A is the hyperfine coupling constant, and I ,  and S.  are operators of nuclear spin 
and electronic shell spin respectively for the atom with radius vector r.. Summation in 
the 6rst and second terms of (24) is over the atoms having nuclear spins and over all 
atoms of the ferromagnet respectively. We assume that there is no change in magnon 
spectrum of the ferromagnet. 

As before, following the same procedure of introducing the ferromagnetic mag- 
netization (mean field) and expressing the magnetization fluctuations in terms of spin 
waves ( T <  Tc), we write down the Hamiltonian (24) in the form 

H =  HI + Hx -+Hi, 
where 

H , =  -h.nz.I,Z fiS2 = -A(SZ) 
n 

H ,  = E fiwka:ak 
k 

where A ,  = (A/2)(2S/No)'D, No is the number of atoms in the ferromagnet and 

1' k -  - I ;  I: = I: efi*, 
n n 



7036 V F Los' 

Restricting ourselves to the case when nuclear spin lo = 4, we obtain the equation 
for ( I t ) ,  = z( t )  of the form (see (16)) 

az/at = -az i b(c' - z2 )  z(0) = -N/2. (25) 
Here 

a = 2y(l + 2Nn)  b = 2yp' c' = N/Zp' i P / 4  

P' = y-'$A: 2 6 ( @ k  - Q)( IV(k - k0)I2 - I/N) 
k 

(26) 
R 

y =  S A ;  2 6 ( ~ ,  - 9) N n  N(Q) 
1 

and ko is the vector which is analogous to K~ in (8). 
According to equation (25) the results in this case have the form of formulae (20)- 

(23) with necessary changes of variables and parameters, which follow from (25) and 
(26). So the expression for the parameter y ,  defining the one-magnon spontaneous 
relaxation rate of a single nuclear spin, may be written as 

y = (3JT/4S)(Q/wm)3k2 

where fLmm = (6x2)2'3SI is the maximum spin-wave energy in the cubic crystal and, as in 
(19), Q considerably exceeds the gap in the magnon spectrum. 

Thus collective superradiant-type relaxation of nuclear spins with magnon emission 
is also possible (see section 4). 

4. Discussion 

Let us calculate the factor p, which defines the effective number of selected spins taking 
part in collective relaxation, the duration of the superradiant impulse zN, the delay time 
tD and the radiation intensity I( t )  according to (22) and (23). It should be noted that the 
form and size of the pattern are essential in the problem under consideration, as a spin 
wavelength taking part in the relaxation processes is considerably smaller than the size 
of the pattern. For the cylinder pattern with area brz and height h, it is easy to obtain 
from (17) the following formula for the cubic lattice: 

1 

P= d c d% 4(00, x )  

(27) 
'-1 

N - 1 sin2[h~,,(~ - x) ]J?[R( l  - x ~ ) ' / ~ ]  
$(@O, x )  = - 4 

N [Ufo(I - x ) ] *  R2(1 - x ' )  

where Ho = Koh, R = ROT, K,, = (fiwo/Sldz)l~andJl(x) istheBesselfunctionof the first 
kind. In order to obtain (27) it is assumed that impurity spins are randomly arranged in 
the pattern, that the vector K~ is directed along the cylinder axis and that K~ is equal to 
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the wavevector modulus of the radiated spin wave with energy hwO. Integration overx 
corresponds to accounting for all possible radiated spin-wave vector K directions (x  = 
cos 0, 8 is the angle between K and the cylinder axis). It should be noted that KOd < 1 
owing to the weak bond between the impurity spin and the matrix one. For nuclear spins 
the factor p’  is determined by (27), where w0 should be substituted by D. 

As Ho 9 1 and R 3 1, the function $(coo, x) has a sharp peak at x = 1. The value of 
p is easily calculated in two cases, namely 

p = 1/R2 R 9 l,Ho < R2 

ji = z /2Ho H ,  * 1, H,, > RZ. 

Taking the first case (Ho < Rz) we obtain from (22) at pN 9 1 

T N  E (l/n)(KgTO/nh) 
where n = N / d h  is the density of impurity spins. 

Assumingthat h = I, = zNv (the maximum value) we have 

t~ = (K$TO/Z7W)1‘2. (28) 
We shall use now (19) for r = 1/(2zo) as well as the expression for the speed of the 

radiated magnon 

U = (ao,/aK),=,, = 2 d ( S I ~ ~ / h ) ’ / ~ .  

Substituting these expressions into (28) and taking into account the expression for K~ we 
obtain 

zN = (2S/c)”(l/wO) (29) 

p N  = c1/2wozo/fiS1/2 (30) 

c 9 CO = z s / ( W O T O ) ~  = (l/SzZS)(wO/IS)3~ (31) 

where c = nuo is the impurity spin concentration (c 4 1). Thus 

and, aspN 9 1, 

where co is the threshold concentration of impurity spins and motO 9 1 for a weakly 
bound spin. 

For nuclear spins (taking into account the expression for y)  we obtain the same 
expressions (29)-(31) in which D is used instead of w”. 

We shall now perform numerical estimation. For impurity spins in a ferromagnet 
we put kBT erg, S = 2, z = 6, hwa = SZI’ = 

S, T N  = 2 X 10-los, p N  = 
15, f D  = 5 x 10-lo s, U = lo4 cm s-l, 1, = 2 x 10-6cm and co = 4 X 

In the case of nuclear spins we take for estimation k B T 4  hD, hQ = 10-18erg, 
ksTc = Then zo = 1/(2y) = 
lO-’s, zN= ~ X ~ O - ~ S ,  pN=104, r D = 6 x 1 O - ’ s ,  v=103cms-’, I C = 6 x  
lo-’ cm and co = 4 X lo-’*. 

So the performed estimations show that the system of initially inverted N selected 
spins (impurity or nuclear) in a ferromagnet at large enough concentration c 9 c, 
(pN 9 1) can, throughinteraction with magnons, passspontaneously tothegroundstate 

hwo, kBTc = fS(S + 1)ZI = 3 x 
erg, d = ’2 X cm and c = lo-’. Then zo = 3 X 

erg, S = 2, z = 6, d = 2 x cm and c = 
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in a short time 

where hw is the spin excitation energy which gets into the spin-wave energy band. As a 
result of this collective relaxation, spins ‘radiate’ magnons coherently in the narrow 
energy band (near hw) and almost in the same direction (defined by the pattern shape). 
The intensity of such ‘radiation’ is proportional to p f l  and can exceed the intensity of 
spontaneous magnon ‘radiation’ (-N) by several orders of magnitude (by p N  times). 
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